
Good practice guide
for code development
in Artificial Intelligence
solutions in health

© TIC Salut Social Foundation

This report has been elaborated by the Artificial Intelligence Area of the TIC
Salut Social Foundation

Authors: Susanna Aussó, Didier Domínguez and Yeray Bartolomé.

Electronic edition: December 2022

This work is licensed under a Creative Commons Attribution - Non-Commer-
cial - No Derivatives 4.0 license. Reproduction, distribution, and public com-
munication is permitted as long as the authorship and publisher are acknowle-
dged, and no commercial use is made. The transformation of this work to
generate a new derivative work is not permitted.

3

4.1. Nomenclature
4.2. Order
4.3. Style
4.4. Profitability
4.5. Documentation

08
08
09

03/ Software
development
methodologies

04/ Recommendations
for code development

04

06

05/ Coding standards

/Table of contents

06/ Code quality

5.1. Programming standards in R
5.2. Python programming standards
5.3. C, C++ and other programming standards
5.4. Benefits of coding standards in software
development
5.5. SOLID principles

6.1. Static code quality analysis
6.2. Code quality metrics
 6.2.1.Cyclomatic complexity
 6.2.2.Halstead Complexity
6.3. Tests
 6.3.1. Unit tests
 6.3.2. System tests
 6.3.3. Implementation tests
 6.3.4. Acceptance tests
 6.3.5. Regression tests

07/ ISO certifications

09

11

16
17
18

14

20
21

23
24
24

22

25

27

29
30
30

28

31

35

2.1. Python
2.2. R
2.3. Java
2.4. C++
2.5. Performance and ecological footprint of
programming languages

10

08/ References 38

09/ Annexes
ANNEX 1: Tidyverse Style Guide
ANNEX 2: Google’s R Style Guide
ANNEX 3: Amazon AWS R Coding Style
ANNEX 4: PEP 8 – Style Guide for Python Code
ANNEX 5: Google Python Style Guide
ANNEX 6: MISRA C:2012 Rules and Directives

41
44
47

40

49

32
33
33
34
34
34

53
56

02/ AI programming
languages

01/ Introduction

1.
Introduction

5The Programme for the Promotion and Development of Artificial Intelligence in the
Catalan Health System aims to create an environment to aid the development and
implementation of Artificial Intelligence (AI) solutions for the optimization of proces-
ses in the Catalan health system.

TIC Salut Social Foundation has created this guide to support those involved in
the development of code for Artificial Intelligence algorithms applied to the field of
health.

The follow-up of this set of good practices makes it possible to obtain a code that
is more understandable, reusable, scalable and easier to modify that will help redu-
ce the time spent on review tasks and prevent common errors during the different
stages of the project. These recommendations also aid collaborative work, as they
allow other collaborators who also develop code to quickly understand and, if ne-
cessary, develop new advances in the project following a specific methodology.

Coding standards are a critical part of maintaining good practices during software
development. We understand a coding standard as a set of established rules and
recommendations (names, formats, etc.) for writing code that vary depending on
the programming language chosen. These standards have been emerging from
various developer communities over time, and if properly applied, they can signifi-
cantly increase code quality and management.

Artificial Intelligence (AI) covers a wide range of techniques, methods and appro-
aches that can be implemented in multiple programming languages. Due to the
increasing complexity of AI applications in health care and their rapid expansion in
recent times, the adoption of consistent coding standards in software development
has become necessary.

There is currently no general set of requirements that software for medical devices
must meet, either from international standardisation organisations or from key me-
dical regulators such as the European Medicines Agency and the Food and Drug
Administration in the USA. Regulators require device developers to adequately vali-
date the security and cybersecurity of their technologies, but details on how device
security should be achieved are scarce. Therefore, while there are no clear guide-
lines that directly mandate the use of certain coding standards, it is clear that as
code bases become more complex and connected, coding standards will become
more relevant to programming teams.

2.
AI programming

languages

7

There are many programming languages capable of meeting different
needs in the design and development of different software intended for
AI. These may be data storage and querying, data analysis, model trai-
ning or explainability techniques. These languages often include a range
of these functionalities simultaneously.

The TIOBE index [1] is a programming language popularity indicator,
which this company has created with the participation of the program-
ming community. The index is updated once a month. The ratings are
based on the number of skilled engineers worldwide, courses and
third-party vendors.

Figure 1. TIOBE INDEX

8

2.1
Python

Python is a fourth-generation, high-level and
interpreted programming language [2]. This
means that it does not need to be compiled
beforehand but can be run directly with an
interpreter. This has the advantage of being
more independent of the hardware and execu-
tion environment, and it is possible to execute
the code remotely in real time, as in the exam-
ple of Google Colab. With regard to variables,
it is an untyped language with discrete variable
declaration, as you only need to assign a value
to a previously non-existent variable to initiali-
se it. The interpreter automatically assigns the
type at runtime based on the assigned valu-
es. In terms of code hierarchy and nesting, this
language does not use brackets (unlike Java,
C++, JS, C#, etc.) but instead indentation
(tabs).
Python lets you load and process data, visu-
alise them, generate basic and complex sta-
tistics, and develop neural networks, genetic
algorithms, etc. Aside from its popularity due
to its simplicity and versatility, the main rea-
son to use Python to develop AI is the ecosys-
tem of resources available. For example, the
most well-known and widely-used deep lear-
ning and machine learning packages and tools

2.2
R

Like Python, R is a fourth-generation, high-le-
vel, interpreted programming language [3].
They also share discrete variable declaration
and typing. While it has traditionally been asso-
ciated with more academic environments, it is
a specific language for working in data analysis
and machine learning.
It is an open-source, cross-platform, functio-
nal, object-oriented and easy-to-learn langua-
ge. It has a very popular development environ-
ment for the language called RStudio (which
now also supports Python).

In order to simplify the task of choosing the languages to use, this guide
focuses on Python, Java, C++ and R, since they are among the most-
used medium- and high-level languages in the software industry [Fig. 1],
and R is one of the languages dedicated to data processing and visuali-
sation most used in scientific research. A large amount of documentati-
on and projects are available for all of these to aid in the task of selecting
the most appropriate for the software’s needs. Nevertheless, it is worth
knowing that there are other languages used rather often in AI such as
Julia, Haskell, Lisp, JavaScript, Prolog and Scala. These are more mo-
dern languages with a significantly lower amount of documentation in
this field, although it is advisable to consider them.

such as Pandas, NumPy, TensorFlow, Keras,
Scikit-learn and many more are all developed
in Python.
The language has evolved in parallel with the
discipline of AI, and this makes it almost indis-
pensable to know it if you work in this field.
In addition, it provides very clear code, allows
rapid prototyping, and aids collaboration for
teamwork.

9

2.4
C++

C++ is a precompiled third-generation lan-
guage [4]. It is characterised by being me-
dium- and high-level, because it usually runs
on the operating system, but it offers aspects
ranging from low-level functions inherited from
C, to object-oriented programming and web
programming. C++ is the fastest of the pro-
gramming languages mentioned, and its spe-
ed is valued for time-sensitive AI programming
projects. It provides fast execution and a low
response time, which is applicable to search
engines and computer game development.
This is because C++ is an evolution of and
written in C. It is therefore designed to provide
low-level implementations that make the most
of the hardware available in exchange for grea-
ter coupling to the architecture supporting the
code. In addition, C++ allows extensive use of
algorithms and is efficient in the use of statis-
tical AI techniques. Another important factor
is that C++ supports the reuse of programs in
development due to inheritance and data hi-
ding. It is therefore time-efficient and cost-sa-
ving.
Its extensive libraries are ideal for complex AI
code, classification, faster mathematical cal-
culations, and high-performance applications.

2.3
Java

Java1 is a third-generation language with a
high level of mixed interpretation, because it is
precompiled in binary but executed by an in-
terpreter called the Java Virtual Machine (JVM)
[4]. Java is a strongly statically-typed language
with explicit variable declaration. Intended for
creating scripts, macros and similar material,
its main advantage is its ease of learning for
common tasks and that it runs both in brow-
sers and on servers (via platforms like Node.js).

It is an excellent complement to other program-
ming languages such as Python and R, espe-
cially for visualisation. It is a multi-paradigm
language that follows the principles of being
object-oriented and Write Once/Run Anywhe-
re (WORA). This principle means that Java is a
language that can be run on any platform that
supports it without the need for compiling. It is
suitable not only for search algorithms or na-
tural language processing but also for neural
networks. This is possible thanks to the JVM
(Java Virtual Machine), a kind of emulator that
simulates a common architecture within each
OS for which it is distributed. This allows de-
coupling of the OS and the application to be
executed.

1 https://www.java.com/es/

10

As one can see, out of the languages mentioned, C++ is the one with the highest base energy
consumption. However, it is also the one that grows the least in proportion to the volume of
inputs provided. Meanwhile, Java, Python and R, when interpreted, consume a much smaller
volume of Watts when it comes to simple operations. However, this scales linearly with the
number of inputs. In any case, Python is considered the fastest and most energy-efficient lan-
guage for most coding tasks.

ALGORITHM PYTHON

Heap Sort (100 inputs)

Heap Sort (1000 inputs)

Heap Sort (1500 inputs)

Quick Sort (100 inputs)

Quick Sort (1000 inputs)

Quick Sort (1500 inputs)

Selection Sort (100 inputs)

Selection Sort(1000 inputs)

Selection Sort(1500 inputs)

Matrix Addition (2x2)

Matrix Addition (5x5)

Matrix Addition (10x10)

Matrix Multiplication (2x2)

Matrix Multiplication (5x5)

Matrix Multiplication (10x10)

5.4

8.1

13.4

6.8

14.4

16.3

6.1

6.7

8

0.8

2.2

3.1

0.9

1.6

2.8

6

9.4

12.8

8.1

15.3

16.6

6.4

7.1

8.2

1.1

2.3

3.2

1

1.8

3

17.3

17.6

18

17.2

17.8

20.2

17.4

18

20.2

17.7

18.9

19.6

17.5

18.2

18.6

5.2

8.2

14.1

6.2

14.2

17

5.8

6.9

8.3

0.7

2.4

3.2

0.7

1.6

2.9

Table 1. Energy consumption of different algorithms in the languages mentioned.

R C++ JAVA

The table below summarises the consumption in Watts (w) of the languages mentioned, based
on different amounts of inputs per measurement:

2.5
Performance and ecological footprint of programming
languages

11

Software
development

methodologies

3.

12

Within the Agile philosophy, over the years, se-
veral development methodologies have been
elaborated and established, each with its own
advantages and weaknesses, with the aim of
adapting this philosophy to the nature of dif-
ferent software projects, development teams,
and organisational policies. Three of these
stand out:

Today, most software projects must support dynamic and iterative de-
velopment, while being a feasible and profitable tool for a changing,
scalable and migratable project. For these reasons, in the industry itself,
the work of notable people such as Hirotaka Takeuchi and Ikujiro No-
naka [5] and Jeff Sutherland [6, 7] and Ken Schwaber [8] has modelled
so-called Agile software development philosophies. The Agile paradigm,
which focuses on short development cycles in which all of the activities
are performed simultaneously (discovery of requirements, implementa-
tion, testing, including the review of the work in previous cycles), is a
philosophy that was “proposed to overcome the convolutional develop-
ment methods’ limitations” [9]. In other words, it is aimed at minimising
the impact of cascading development, allowing some flexibility when
making changes to requirements in each development stage. This way
of working is a good practice that minimises subsequent errors in the
software in production.

• Scrum methodology: focused on being a
framework that divides project development
into several timeboxed sprints. Within each
sprint, different tasks related to the deve-
lopment of the planned functionalities must
be carried out, such as reviewing upcoming
requirements, implementing present require-
ments, and integration and/or refactoring of
previous ones, comprehensive product tes-
ting before releasing the new version, and
writing documentation, but emphasising the
code as the main source of it.

• Kanban methodology: this consists of
showing the tasks in each iteration on labels
that can be moved in columns according
to their state of development. It focuses on
showing the progress of the product to peo-
ple outside the development team.

13

• Lean Methodology:
 - Eliminating waste/leftovers: By waste

or leftovers we mean everything that
does not add value to the software.
Within software development we could
include the following elements: ge-
nerated code that offers unwanted or
unneeded functionality, delays in the
software development process, pro-
blems with internal communication, ex-
cessive documentation, etc. However,
in AI topics we sometimes work with
non-deterministic or highly-complex li-
braries and algorithms and we have to
take into account a couple of concepts
and best practices. When debugging is
difficult, it is often a sign that the code
lacks diagnostic functionality or tracea-
bility. This aspect of writing code is of-
ten overlooked because it is not func-
tional. However, it can save hours and
sometimes even days of debugging
time.

 - Strengthening the team: Helping deve-
lopers participate in making decisions
about the time associated with tasks,
prioritising them and other ways to in-
volve team members, making it easier
for them to feel an important part of it.
In addition, the developers themselves
know first-hand which tasks cost more,
which cost less and the implications
they have for the project’s lifecycle.
Techniques in which weights, efforts or
complexities are assigned to the tasks
to be performed come within this prin-
ciple.

 - Continuous Integration: Having a good

continuous integration system that in-
cludes automated testing, builds, and
usability testing is critical because it
makes it possible to produce software
that is easy to maintain, improve and
reuse. This avoids adding leftovers to
the software and aids maintenance of
the code and subsequent versions in
production.

 - Viewing the whole: Analysing our so-
ftware’s interactions with the rest of the
systems allows us to study possible
improvements and changes that result
in better performance and bring grea-
ter value to end users and the project
team.

14

4.
Recommendations

for code
development

15

We define five main concepts in the application of good programming
practices: nomenclature, order, profitability, style and documentation.
Each of them includes different sections:

• Nomenclature
 - Naming conventions for variables
 - Naming conventions for classes and

functions
• Order

 - Add clear and concise comments to the
code

 - Grouping and organisation of code
• Style

 - Limit line length
 - Avoid using “magic numbers”
 - Indentation
 - Avoid deep nesting

• Profitability
 - Portability
 - Reusability and scalability
 - Test to verify functionality

• Documentation
 - Documentation and/or README file

with explanation and guide used by the
code

These concepts, which make up the general
structure of good practices, are explained in
detail below.

16

Nomenclature
4.1.

Naming conventions for variables

During programming, variable names must be easy to understand and represent the data
they store. Therefore, the way variables are named is key to making code readable and
avoiding confusion.

The idea behind variable naming during code development is simple: create variable
names that are self-explanatory and consistent throughout the code. Trying to save time
by using very short names for variables and functions is counterproductive in the long
run, especially when there are many code editors and IDEs2 available to help write code.

Names must have word limits. There are three popular options:

• UpperCamelCase or PascalCase: The first letter of each word is capitalised (e.g. Par-
seRawImageData()).

• camelCase: The first letter of each word is capitalised, except the first word (e.gparse-
RawImageData()).

• Underscores: underscores between words, such as mysql_real_escape_string().

Some platforms tend to use a particular naming scheme. In the case of Java and C++, the
most common convention is to use camelCase for variables and methods, while PascalCa-
se is used for constructors and class names. In the case of Python and R, underscores are
used for variable names.
These styles can also be mixed. Some programmers prefer to use underscores for procedu-
re functions and class names, but they use CamelCase for class method names.

2 An Integrated Development Environment, unlike an editor, is a heavier program that requires much more RAM and a more
powerful processor.

17

Naming conventions for classes and func-
tions

The basic concepts of naming classes and
functions are an essential aspect of learning
to program.

Similar to variable naming conventions,
functions and classes should also consist
of descriptive titles that are delimited using
conventions, as mentioned above. The pur-
pose of using suitable naming conventions
is to ensure that variables, functions, and
classes in the code can be easily distin-
guished from one another.

Order
4.2.

Add clear and concise comments to the
code

Code always ends up being modified or up-
dated over time. Almost every programmer
will come across someone else’s code at
one point or another. A bad habit among in-
experienced programmers is to include few
comments during software development.
This poses a significant challenge when
working in a team, where more than one per-
son may be working on a particular module.

On the other hand, it is also advisable not to
overdo it. Too many comments can decrea-
se the value of knowledge transfer between
developers working on the same module.
Ideally, comments should explain why cer-
tain code is being used. If a comment of
more than one line must be written to ex-
plain what the code is doing, you should
consider rewriting the code to make it more
readable.

In short, there is a great debate about whet-
her it is a good standard to code comment
or not. Nowadays, a significant part of the
technology industry considers a good code
to be the one that by using proper nomen-
clature, structure and formatting, is reada-
ble without the need for comments. In any
case, it is worth explaining that comments
are not the right way to convey information
about the functionality and structure of the
project, and that they can in no way replace
clean code and good documentation.

Grouping and organisation of code

Good organisation is vital to maintain a
good structure and make the code unders-
tandable. Very often, certain tasks require
several lines of code. Adding a comment at
the beginning of each block of code empha-
sises visual separation and aids understan-
ding. Keeping similar tasks inside separate
blocks of code, with gaps between them,
as shown in the following example, is very
positive for good code management:

llibreries
import argparse
import os
import sys
import numpy as np
import pandas as pd

moduls
carregar llistat de gens
def load_genes(genes):
 list_genes = open(str(genes), “r”)
 genes = []
 for line in list_genes:
 line = line.strip()
 genes.append(str(line))
 return genes

Figure 2. Example of code grouping and organisation.

18

Style
4.3.

A programming style is a set of guidelines used to format programming instructions. Following
a style makes code easier for programmers to understand and maintain, and helps reduce the
likelihood of introducing errors. Guidelines can be developed from the coding conventions used in
an organisation with style variations for different programming languages.

Key elements of the programming style guide include naming conventions, the use of comments,
and formatting (indentation, whitespace, etc.). In some languages (e.g. Python) indentation is used
to indicate control structures (so proper indentation is required), while in other languages indenta-
tion is used to improve visual appearance and readability of the code (e.g. Java).

Limit line length

It is good practice is to avoid writing lines of code that are too long horizontally, as our eyes feel
more comfortable reading tall and narrow columns of text. For example, when using the Python
language, the recommended line length limit is 79 characters.

#unload alternatives
refbases = set(refBase.split (‘,’))
altBases = set(altBase. split (‘,’))
added = set ()
for refBase in refBases.difference(altBases):
 for altBase in filter (lambda x: x != refBase, altBases):
 outline = process_alt(refBase, altBase, contig, pos,

 out.write(outline)
 added.add((refBase, altbase))
for altBase in altBases.difference(refBases):
 for refBase in filter(lambda x: × != altBase, refBases) :
 if (refBase, altBase) in added:
 continue
 outline = process_alt(refBase, altase, contig,

Figure 3. Example of line length limitation.

19

Avoid using “magic numbers”

The concept of “magic numbers” in pro-
gramming refers to the use of numerical
values encoded in the code. Using these
numbers may make sense to the person
writing the code, but it can make it difficult
to understand the purpose of that number
when the programmer looks at the same pi-
ece of code in the future, or when someone
else does.

Looking at the code in Figure 4, in the first case
it is clear that it is checking if the count is less
than the selected threshold (thr = 400), while
in the second case the meaning of the num-
ber 400 is unknown. In addition, it is easier to
update the threshold thr by changing its value
in a single place, which would not be possi-
ble using magic numbers, because you would
have to go through the entire code to unders-
tand where the value comes from.

Indentation

Formatting and indentation are necessary
to organise code. By using indentation, whi-
tespace and tabs within code, programmers
ensure that their code is readable and orga-
nised.

#cas 1
thr = 400
for gene in results:
 p = results[gene]
 if p <= thr:
 print gene, p

#cas 2
for gene in results:
 p = results[gene]
 if o <= 400:
 print gene, p

y <- 10
y <- function(x) {
 x+у
}
f (5)

Figure 4. Example of how not to use magic numbers.

Figure 5. Indentation and use of brackets.

There is no right or wrong way to indent
code. There are popular opinions but no
pattern is universally followed. The impor-
tant thing is to be consistent with the cho-
sen style. Changing indentation styles in the
middle of a script leads to confusion and
errors in code execution. In some langua-
ges (e.g. Python) a combination of different
indentation styles (tabs and spaces) is not
allowed. If you are part of a team or contri-
buting code to a project, you must follow
the existing style that is being used in that
project.

Indentation styles are not always comple-
tely different from each other. Sometimes
they mix up different rules. For example, in
the R language, the opening curly brace “{“
in a function goes on the same line as the
control structures, but after the functions
have been defined, they go on the next line
and in an more leftward position, as shown
in the following image:

20

Avoid deep nesting

Too many levels of nesting can make code hard to read and follow. To improve readability, it is
usually possible to make changes to the code to reduce the level of nesting:

#cas 1
thr1 = 400
thr2 = 1000
thr3 = 100
for gene in results:
 p = results[gene]
 if p <= thr1:
 print gene
 if p <= thr2:
 print gene
 if p <= thr3:
 print gene
 ...

#cas 2
thr1 = 400
thr2 = 1000
thr3 = 100
for gene in results:
 p = results[gene]
 if p <= thr1:
 print gene
 elif p <= thr2:
 print gene
 elif p <= thr3:
 print gene
 else:
 ...

Figure 6. Example of best practice in code nesting.

Profitability
4.4.

Profitability

Portability is the ability of the source code to run on different machines and platforms as
much as possible. If programmers have to rewrite the same code when software is trans-
ferred from one environment to another, time and effort are wasted. Multi-platform support
can be planned early in software development; you can write code that could work in every
possible environment.

Portability is a key aspect that ensures the functionality of a program. If the code contains
specific values for environmental parameters in the source code (hard-code), such as userna-
mes, hostnames, IP addresses and URLs, it will not run on a host with a different configurati-
on. In these situations, the developer would have to change the source code and that would
not help portability. To deal with this, variables would need to be “parameterised” and set
before running the software in different environments. This can be controlled with properties
or settings files, databases or application servers.

21

Also, resources such as XML files must also
have variables instead of literal values. Ot-
herwise, references would need to be chan-
ged while coding each time you want to port
your application to another environment.

Another good practice is the creation of
portable and self-sufficient application con-
tainers with Docker. Containers allow you
to build an application with all the libraries
and dependencies it needs and distribute
it as a single package. The application will
run on any other machine in the production
environment, even if the machine’s settings
are different from the machine used to write
the code.

Reusability and scalability

In code development, reusability is an es-
sential goal of software design. If modules
and components have already been tested,
you can save time by reusing them. Softwa-
re projects often start with an existing fra-
mework or structure that contains a previ-
ous version of the project. So development
time, costs and resources can be reduced
by reusing software components and mo-
dules. This translates directly into faster de-
livery of the project, thus increasing profita-
bility.

Another key aspect to pay attention to is
code scalability. As user demands change,
new features and improvements are cons-
tantly added to an application. Therefore,
the ability to incorporate updates is an es-
sential part of the software design process.
Accordingly, it is good practice to test the
code of AI algorithms with small subsets of
data. Once you are certain that there are no
errors, you can scale up with data of a larger
size.

Test to verify functionality

Testing the work while coding is a vital part
of software development and should be well

planned as it requires test cases to be ready
before software development begins. Also,
while basic unit testing is a good practice to
adopt, it is also useful to perform automa-
ted functional testing with the help of tools
such as Unittest, Doctest, Geb, Spock and
Selenium.

Once the software is finished and made
available to the end user, depending on its
purpose, it is recommended to provide a
test executable for when the user installs
the software on their local environment This
makes it easy to test whether or not the
user’s environment is suitable before they
start performing more complex tasks.

Documentation
4.5.

Good documentation of everything that has
been carried out is essential for the correct
execution of the developed software. The
basic documents in order to have a well-or-
dered, executable and easily-accessible
project for future versions are a README,
INSTALL and LICENCE. These documents
contain the structure of the code, the gui-
des that have been used to program it, the
steps to follow for correct installation, and
the terms of the license whereby the so-
ftware is made available to the user.

22

Coding
standards

5.

23

5.1.
Programming standards
in R

Tidyverse Style Guide

The Tidyverse Style Guide4 by Hadley
Wickham consists of a set of rules and re-
commendations for programming in R sa-
fely and correctly. It is based on two main
sections: analysis and creation of libraries.
The analysis section focuses on nomencla-
ture, syntax, the creation and structure of
functions, and the correct operation of pi-
pes (the process of going from one functi-
on to another). With regard to building and
distributing libraries, it also focuses largely
on naming and organising files, good docu-
mentation and description of functions, cre-
ating a test file for code validation, and the
correct communication of errors in the code
functionality (see Annex 1).

A coding standard is a programming paradigm that seeks to reduce the
number of decisions the programmer must make when writing code.
Companies such as Google, whose primary programming language is
Python, may create their own coding standards to ensure consistency in
naming conventions and code layout. Also, free software libraries (such
as Tensorflow3) may use previously-established standards and adapt
them to their needs. These guides often end up being a reference for
programmers and must be taken into account.
The following are the most widely recognised and used standards for
programming in R, Python, C, C++, and others, which make code easier
to read, share and verify.

Google R Style Guide

Google’s R Style Guide6 is a fork of the Ti-
dyverse Style Guide by Hadley Wickham,
mentioned above. Google’s modifications
were developed in collaboration with the in-
ternal R user community and reaffirm Hadley
Wickham’s rules and recommendations for
efficient and correct R programming. The
two main differences are the identification
of functions with BigCamelCase to clearly
distinguish them from other objects, and
the explicit use of the return() option, among
others (see Annex 2).

R Coding Style (Amazon)

Amazon’s R Coding Style R Coding Style is
based on the Tidyverse Style Guide, Goo-
gle’s R Style Guide (both mentioned above),
and Hadley Wickham’s “Advanced R” guide
[10]. Due to the generation of vast amounts
of content on its platform, Amazon decided

3 https://www.tensorflow.org/community/contribute/code_style
4 https://style.tidyverse.org/index.html
5 https://google.github.io/styleguide/Rguide.html
6 https://rstudio-pubs-static.s3.amazonaws.com/390511_286f47c578694d3dbd35b6a71f3af4d6.html

24

5.2.
Programming standards in
Python

Python Enhancement Proposals: PEP8

The main benefit of programming in Python
is that the language is easy to read. The
PEP8 guide, written by Guido van Rossum,
Barry Warsaw, and Nick Coghlan, provides
a set of rules and recommendations for
Python programming to keep it easy to read
and write. This set of recommendations has
evolved and been updated over time, and
has been adapted to the evolution of the
Python language. The guide contains con-
cepts ranging from syntax to the structural
organisation of the code (see Annex 4).

Google Python Style Guide

Google’s Python Style Guide8 contains all
the rules and recommendations for pro-
gramming in Python. Each open source
project has its own code guide and best
practices. They have produced their own
guide containing a series of recommenda-
tions on language, style and good use (see
Annex 5).

The Hitchhiker’s Guide to Python

The Hitchhiker’s Guide to Python9 is an un-
official public guide that is constantly up-
dated by Python programmers, which pro-
vides you with a best practice manual with
recommendations for correct installation,
configuration and use of Python [11].

5.3.
Programming standards in
C,C++ and others

MISRA C/C++

MISRA10 provides world-leading best prac-
tice guidelines to provide source code por-
tability, safety and security in the context of
embedded software. It began in the early
1990s as a project part of the UK govern-
ment’s SafeIT programme, which developed
guidelines for the creation of software em-
bedded in road vehicle electronic systems.
Over time, MISRA has continued to work
on a voluntary basis, producing reference
publications such as MISRA C and MISRA
C++ [12, 13].

Currently, MISRA C:2012 is used. This was
published in 2013 and updated in 2020 and
consists of 17 directives, which include ge-
neral compliances not related to the source
code (requirements, specifications, design,
etc.), and 158 rules, which include informa-
tion related to the source code (see Annex
6).

CERT

A Computer Emergency Response Team
(CERT11) is a group of computer security ex-
perts responsible for protecting, detecting
and responding to an organisation’s cyber-
security incidents.

CERT/CC coding standards consist of ru-
les and recommendations that enable de-
velopers to avoid unsafe coding practices
and undefined behaviours that can lead to

7 https://peps.python.org/pep-0008/
8 https://google.github.io/styleguide/pyguide.html
9 https://docs.python-guide.org/
10 https://www.misra.org.uk/
11 https://wiki.sei.cmu.edu/confluence/

to create its own guide that includes a series
of recommendations on language, style and
good use and which is constantly updated.
This guide contains aspects of nomenclatu-
re, syntax and organisation (see Annex 3).

25

vulnerabilities. These are under constant re-
view, with the latest rules and recommenda-
tions available online12.

The organisation has developed four sub-
sets of rules and recommendations to
support four programming languages:
CERT C, which focuses on helping reduce
the likelihood of C language vulnerabilities;
CERT C++, which shares many rules and re-
commendations with CERT C but adds spe-
cific ones related to C++ in order to avoid
vulnerabilities specific to it; CERT Oracle for
Java, which consists of specific rules and
recommendations for Java to eliminate pos-
sible vulnerabilities in robust systems; and
CERT Perl, which focuses on standards and
recommendations to avoid Perl language
vulnerabilities.

CWE

CWE13 (Common Weakness Enumeration)
is a community-developed list of softwa-
re weakness types related to security pro-
blems. These “weaknesses” are flaws or
errors in software implementation, code,
design or architecture which, if not resolved,
could make systems, networks or hardware
vulnerable to attack.

CWE’s primary goal is to stop vulnerabilities
at source by educating software architects,
designers, programmers and buyers on how
to eliminate the most common errors befo-
re delivering products. Using CWE helps
prevent the types of security vulnerabilities
that can affect the software and hardware
industries, evaluate coverage of tools targe-
ting these weaknesses, leverage a common
baseline standard for weakness identificati-
on, mitigation and prevention, and prevent
software and hardware vulnerabilities prior
to deployment.

12 https://wiki.sei.cmu.edu/confluence/dashboard.action#all-updates
13 https://cwe.mitre.org/index.html

5.4.
Benefits of coding
standards in software
development

In a team of programmers without established
code enforcement, it is very common for them
to program individually without following uni-
fied criteria. This results in a repository that is
hard to understand and maintain. Poorly-orga-
nised code can result in an increase in working
hours to search for the source of an error, and
create divergences between the work team
when the work is unified.

Implementing coding standards in software
development brings benefits such as cultiva-
ting a culture of excellence, increasing team
effectiveness and efficiency, minimising er-
rors, rework and delays, and creating a positi-
ve feedback loop, as detailed in the following
points:

They cultivate a culture of excellence

ECoding standards cultivate a culture of
excellence in which the goals and outco-
mes are clear to all of the team members.
They are independent, documented, widely
understood and achievable in a clear and
demonstrable way. It no longer depends on
one person’s style or understanding of what
is ideal or what the current team culture is.

Over time, software development practices
become more efficient as the team learns
to code the standard in a unified and sys-
tematic way.

They increase effectiveness and efficiency

Industry-accepted standards not only iden-
tify problems to avoid, but also provide best
practices to help increase teams’ efficiency.

26

Apart from identifying security vulnerabiliti-
es and possible flaws to avoid, they advise
on best practices and styles. All of the rules
and recommendations in coding standards
continue to be reviewed, updated and ex-
panded to cover new issues and scenarios
(see section 6.2).

Software development teams can bene-
fit from prior industry experiences and the
work of thousands of experts to refine their
practices and produce code with the highest
possible security and trustworthiness. Fo-
llowing these best practices makes it possi-
ble to produce more efficiently and quickly,
and avoid problems.

Minimising errors, rework and delays

When you are about to launch a release,
a flaw or security vulnerability is often dis-
covered that inevitably requires a return to
development and a restart of the process to
fix it before release. Alternatively, there are
also risks that software containing a defect
will be delivered to the customer which,
once identified and analysed, will require
the team to abandon their current tasks
to fix and update the product. The conse-
quences of such a situation can be even
more serious in the case of critical indus-
tries, as they may be very visible or cause
serious security problems.

In short, full compliance with coding stan-
dards avoids costly common mistakes
throughout the development process, while
avoiding rework and last-minute delays.

Positive feedback loop

Compliance with standards creates a posi-
tive feedback loop of fewer defects in the
field, an increased competitive advantage
through adherence to standards, and de-
creased time to market for new products.

Teams want to work on new innovative fea-
tures for dynamic and expanding products.
Committing to a recognised coding stan-
dard is a competitive advantage, retaining
current users and opening doors to new
ones. As software problems and security
vulnerabilities become more visible, instabi-
lity and user insecurity increases, and they
are intended to reduce risks.

When more reliable and industry-compliant
code is delivered, with fewer defects in the
field, the team can deliver new features and
new products more quickly. At the same
time, this improves the brand’s reputation
and creates future opportunities. And so the
feedback loop begins.

For many years, the medical device indus-
try was motivated to seek coding standards
for this very reason, largely based on the
MISRA C standards (see Section 6.2.3).
Over time, industry-specific standards have
emerged such as the FDA’s recognition of
UL2900 for security in medical devices and
IoT networks.

Choosing the right coding standard is im-
portant because:

• Code trustworthiness is increased by en-
forcing compliance with rules.

• It educates developers on secure code
development practices, reducing time and
the costs of onboarding and training.

• It establishes a consistent approach to
code analysis that can be shared across
teams.

• It provides flexibility to adapt to different
needs, without building new code develop-
ment rules from scratch.

27

5.5.
SOLID principles

Today, in most high-level software projects,
due to the high level of abstraction, ob-
ject-oriented programming (OOP) is used at
least in part. In order to create a standard of
good coding practices that would help pro-
duce quality object-oriented code, the SO-
LID principles were introduced in the early
2000s. This mnemonic reminds you of the
five principles that make a solid object-ori-
ented program. These principles are:

• Single responsibility: An object should
only have a single reason to change.

• Open/closed: Software units must be open
to extension and closed to modification.

• Liskov substitution: A program’s objects
should be replaceable by instances of their
subtypes without altering the program’s
correct operation.

• Interface segregation: Many client-speci-
fic interfaces are better than a general pur-
pose one.

• Dependency investment: The notion that
you should rely on abstractions, not imple-
mentations. Dependency injection is used
to follow this principle..

28

Code
quality

6.

29

There is no single way to measure code qua-
lity. What is valued may vary between develop-
ment teams, but some key traits to measure for
higher code quality are [14]:

• Functionality: How effectively the software
interacts with other components of the sys-
tem. The software must provide appropria-
te functions as per requirement, and these
functions must be implemented correctly.

• Reliability: Reliability is the capability of
the software to perform under specific con-
ditions for a specified duration.

• Usability: Usability of software is defined
as its ease of use, i.e. how easily a user can
understand the functions of the software
and how much efforts are required to follow
the features.

• Efficiency: The efficiency of the software is
dependent on the architecture and coding
practice followed during development.

• Maintenance: Maintainability measures
the ease with which the software can be
maintained. It is related to the size, consis-
tency, structure and complexity of the co-
debase.

• Portability: Portability measures how usa-
ble the software is in different environments.
This is a matter of platform independence,
i.e. how easily a system adapts to changes
in specifications, how easy it is to install
the software and how easy it is to replace a
component in a given environment.

Quality assurance is a systematic way of creating an environment to
ensure that the software being developed meets quality requirements.
Therefore, it is a preventive process aimed at establishing the correct
methodology and standard to provide a quality environment for the pro-
duct being developed.

6.1.
Static code quality analysis

Developing quality code takes time and effort
in the early stages, but in the long run it re-
duces the cost of maintenance and bug fixes.
Analysing and measuring code quality can be
tricky, as it can be subjective. However, cer-
tain metrics can be used to objectively assess
it, and there are several ways to reduce com-
plexity and improve quality.

Static code analysis identifies defects, vulne-
rabilities, and compliance issues as you code.
It detects problems that are often overlooked
when using other methods such as compilers
and manual code reviews. With static code
analysis, software problems can be fixed ear-
lier, reducing overheads and enabling a quality
product to be delivered on time. It consists of
a series of automated checks that are perfor-
med on the source code. A static analysis tool
scans the code for known common errors and
vulnerabilities, such as memory leaks and bu-
ffer overflows14. The analysis can also enforce
code development rules.

Like all forms of automated testing, static code
analysis ensures that checks are performed
consistently and provides quick feedback on
the latest changes. However, it can only iden-
tify cases in which programmed rules are
broken; you cannot find all the bugs just by re-

14 A buffer overflow or buffer overrun occurs when more data is
placed in a fixed-length buffer than it can handle. The additional
information, which has to go somewhere, may overflow into
adjacent memory space, corrupting or overwriting the data
contained in this space.

30

6.2.
Code quality metrics

Cyclomatic complexity and Halstead comple-
xity are two quantitative static analysis metrics
to measure code quality.

ading the source code. There is also the risk of
false positives, so it is necessary to interpret
the results.

So static code analysis is a valuable comple-
ment to code reviews, as it highlights known
issues and frees up time for tasks such as de-
sign review and the general approach.

The benefits of using automated static
analysis include:

• Processing tens of thousands of files in a
few minutes. A human reviewer is typically
only able to review a few hundred lines of
source code per hour, which dramatically
shortens the overall project lifecycle and
increases the burden on work teams.

• It is less expensive than manual code ins-
pections. It identifies known defects on de-
mand and never misses anything. Manual
code inspections are less effective, more
time-consuming, and more expensive.

• They provide more accurate results than
a human. They eliminate errors and omis-
sions that occur during manual code revi-
ews, thereby improving code quality.

Regarding the drawbacks, organisations
should be aware of the following:

• False positives can be detected.
• A tool may not indicate what the flaw in the

code is when it finds one.
• Not all code development rules can always

be followed, for example rules that require
external documentation.

• It cannot detect how a function will be exe-
cuted.

• It may not be possible to parse system and
third-party libraries.

Cyclomatic complexity
6.2.1.

Cyclomatic complexity (CC) is a metric that
quantifies software quality. It was developed by
Thomas J. McCade in 1976 and uses a simple
calculation based on a control-flow diagram
representing the code to be analysed [15]. This
flow diagram shows the number of linearly in-
dependent paths that the code takes when it
is executed and is represented by nodes and
edges. Each node represents a basic block of
code and the edges represent the connections
or paths between blocks of program code (Fig.
7).

31

int x,y,r;
if (x<0 || v<0) {
 system.out.println(‘X o Y son negatius’);
} else {
 r=(x+y)/2;
 system.out.println(‘La mitjana de X i Y es:’ + r):
}

Figure 7. Example of a Cyclomatic Complexity calculation. A: fragment of code to be analysed; B: diagram of representative nodes and
edges when executing the code fragment in Figure 7A. The blue nodes represent the input and output of the execution, the orange ones
the conditions, and the edges the execution paths.

A B

Complex code is unreliable, inefficient and of
low quality, so it is important to measure cy-
clomatic complexity so you can improve code
quality if necessary. The higher the number of
paths, the more complex the code, and the
more likely it is to contain defects and be diffi-
cult to test, read, and maintain.

Taking the code fragment in Figure 7A as an
example, the calculation to measure cycloma-
tic complexity (CC) is:

CC = no. of edges – no. of nodes + 2*no. of
output nodes

As one can see in Figure 13B, the blue nodes
(2) represent the input and output of the exe-
cution, the orange ones (4) the conditions, and
the edges (7) the execution paths. Therefore,
the resulting formula would be:

CC = 7 – 6 + 2 = 3

There is agreement regarding the simplicity
of code that depends on the value obtained
when calculating its cyclomatic complexity.
Based on the value obtained, we can deter-
mine if the code is simple (CC value between
1-10), slightly complex (CC value between 11-
20), complex (CC value between 21-50), or not
testable (CC value of more than 50). When the
code has a value between 1 and 10 it is consi-
dered clean, testable, effective and managea-
ble. In contrast, above 10, the risk of defects
gradually increases, until it reaches 50, which
is considered untestable.

Halstead Complexity
6.2.2.

Halstead’s complexity measure was deve-
loped by Maurice Halstead in 1977 as a means
to determine a quantitative measurement of
complexity from operators and operands using
indicators [16]. This metric measures the com-
putational complexity of the code in terms of
bugs, difficulty and testing time.

Halstead metrics are only meaningful at source
code level, and vary with the following para-
meters:

PARAMETER MEANING

n1

n2

N1

N2

Number of distinct operators

Number of distinct operands

Number of occurrences of the operator

Number of occurrences of operands

Table 2. Parameters and meanings of Halstead metrics.

32

Vocabulary

Length

Volume

Difficulty

Effort

Bugs

Testing time

n1+n2

N1+N2

N*log2n

(n1/2)*(N2/n2)

V*D

V/3000

E/18

Figure 8. Code example in C.

Taking into account these parameters, various
metrics can be measured:

Taking as an example the code fragment in Fi-
gure 14, and taking as an operator (n1): main,
(), {}, int, scanf, &, =, ,, +, /, ;, printf; and as
operands (n2): x, y, z, avg, “%d %d %d”, 3,
“avg = %d”

Halstead metrics can be calculated like this:

n1 = 12, n2 = 7; n = 19

N1 = 27, N2 = 15, N = 42

N = 12*log212+7*log27 = 62.7

V = 42*log219 = 178.4

D = (12/2)+(15/7) = 12.85

E = 12.85*178.4 = 2292.44

T = 2292.44/18 = 127.357 seconds

METRIC MEANING FORMULA

n

N

V

D

E

B

T

Table 3. Halstead Complexity metrics, meanings and formu-
las.

main()
{
 int x, y, z, avg;
 scanf(“%d %d %d”, &x, &y, &z);
 avg = (x+y+z)/3;
 printf(“avg = %d”, avg);
}

6.3.
Tests

The testing phase of the software lifecycle is
performed to determine whether the proposed
design meets the initial set of objectives. It is
aimed at detecting errors made in the previ-
ous stages in order to correct them. Of course,
this should ideally be done before the end user
encounters them. There are different types of
tests, each with its own objectives, focus and
methodologies.

33

System tests
6.3.2.

The purpose of these is global integration, veri-
fying the correct functioning of all the interfa-
ces between the different modules that make it
up and with the rest of the information systems
or tools with which it will communicate. The fo-
llowing list of tests are executed to do this:

• Functional tests, with the aim of ensuring
that the system correctly performs all the
functions detailed in the specifications pro-
vided by the system user.

• Integration tests to validate that the system
communicates correctly with third-party
applications. The man-machine interfaces
are tested as part of this type of test.

• Performance tests to verify that the respon-
se times are within the intervals stipulated
in the system specifications.

• Volume tests in which the system’s operati-
on will be monitored when it is working with
large volumes of data. Tests are mainly per-
formed in the modules.

• Overload tests to check the operation of
the system when it is subjected to massive
loads, with the aim of defining the maxi-
mum operating thresholds where the sys-
tem operates below the established requi-
rements.

• Backup tests to verify that the system can
recover from failures, both physical and lo-
gical, without compromising data integrity.

• Ease-of-use tests to check the system’s
adaptability to the user’s needs in terms of
system usability.

• Operation tests to verify the correct imple-
mentation of the operating procedures, in-
cluding planning and control of work, boo-
ting and rebooting the system.

• System security tests to verify system ac-
cess control mechanisms.

Unit tests
6.3.1.

The purpose of these is to verify the functiona-
lity and structure of each individual component
that makes up the system. This type of test
verifies that:

• The modules that make up the system are
free of errors.

• All the main logical paths are executed cor-
rectly in each module of the application.

• All of the transactions performed by each
module are executed correctly.

34

Regression tests

Implementation tests

Acceptance tests

6.3.5.

6.3.3.

6.3.4.

Regression tests are performed whenever a new
module or functionality is added to the project in
order to verify that the implemented changes do
not introduce undesired behaviour into the sys-
tem. To perform these it is necessary to repeat
the battery of tests defined above.

Implementation tests are carried out to verify
the correct operation of all of the system’s mo-
dules and functionalities, which are fully inte-
grated in both the hardware and the software,
in the final operating environment. So it will be
the users who, from an operational point of
view, accept the system once it has been im-
plemented in the real operating environment. It
should be emphasised that, at this point, sys-
tem backup tests are also carried out to verify
that its operation is not compromised by the
existence of control and monitoring of the data
safeguarding and recovery procedures.

A set of tests performed on the system to vali-
date that it complies with the expected opera-
tion in terms of functionality and performance.
These tests are defined and executed by the
system users, as they are the people responsi-
ble for its acceptance.

35

7.
ISO certifications

36

15 https://www.iso.org/

The main objective of ISO is to help compa-
nies optimise their processes in order to incre-
ase the quality of their services by providing a
set of requirements and standards to follow.
As seen throughout this document, a standard
is described as an expert-endorsed method of
best practice, whether for software develop-
ment, risk assessment, or other activity.

International standards allow consumers to
trust that products are reliable and of good
quality. An ISO certificate is international re-
cognition that offers companies the possibility
of operating beyond national borders, ena-
bling them to increase sales and income. ISO
labels help to improve the image of compa-
nies, as they can demonstrate that they work
according to international standards. For many
buyers and customers, this is a sign that com-
panies offer excellent products and services.

The ISO, also known as the International Organization for Standardi-
zation, is an independent non-governmental international organisation.
Through its members, it brings together experts to share knowledge and
develop voluntary international standards covering aspects of technolo-
gy and manufacturing to ensure quality, health, customer service, safety
and data protection.

ISO standards seek to ensure quality, consis-
tency and safety. There are multiple benefits
for organisations that comply with these stan-
dards, such as trustworthiness, improved per-
formance and quality, reduced risk, sustainabi-
lity and innovation. Developing software under
ISO standards ensures better code quality and
robustness, reducing the likelihood of errors in
production.

ISOs applicable to code development

Some of the ISO standards for software deve-
lopment are explained below:

• ISO 27000: Information security
• ISO 29119: Software testing
• ISO 25001: Software product quality requi-

rements and evaluation (SQuaRE)

37

The ISO 27000 family includes standards for
information security within an organisation.
The primary purpose of this ISO is to protect
the company’s assets and improve its security
practices.

ISO 27001 is the internationally recognised
standard for information security management
systems (ISMS). This consists of policies, pro-
cesses, controls and other components invol-
ving people in the company as well as proces-
ses, property and technology infrastructure
used by the organisation.

The primary purpose of this standard is ensu-
ring that information and information proces-
sing facilities are secure and legal compliance
is properly implemented and maintained across
organisations and uses risk and opportunity
management processes, risk assessments and
risk treatments to mitigate and properly res-
pond to security threats and incidents such as
cybercrime, personal data breaches, damage,
misuse and viral attacks. ISO 27001 includes
controls for protecting personally identifiable
information which assists with GDPR compli-
ance, and as a method for achieving good data
security.

ISO 29119 focuses on software testing. The
main idea behind this ISO is that testing is the
primary approach to risk mitigation and pre-
vention. Therefore, all the standards follow the
risk-based approach and encourage compa-
nies to focus on the most important functions.

ISO/IEC 25001:2014 provides requirements
and recommendations for an organisation res-
ponsible for implementing and managing the
systems and software product quality require-
ments specification and evaluation activities
through the provision of technology, tools, ex-
periences, and management skills.

Benefits:

• Ensuring a reduction in software failures af-
ter its implementation in production.

• Evaluating and monitoring the performance
of the developed software product, ensu-
ring that it will be able to deliver the results
taking into account the time and resource
constraints established.

• Ensuring that the developed software pro-
duct respects the necessary levels for se-
curity features (confidentiality, integrity,
authenticity, etc.).

• Verifying that the developed product can be
put into production without compromising
the rest of the systems and maintaining
compatibility with the necessary interfaces.

38

References
8.

39

 [1] Index, T. I. O. B. E. (2018). Tiobe-the software quality company. TIOBE Index|
TIOBE–The Software Quality Company [Electronic resource]. https://www. tiobe.
com/tiobe-index/

[2] Fangohr, H. (2004). A Comparison of C, MATLAB, and Python as Teaching
Languages in Engineering. In: Bubak, M., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds) Computational Science - ICCS 2004. ICCS 2004. Lecture
Notes in Computer Science, vol 3039. Springer, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-540-25944-2_157

[3] Baskova, O., Gatsenko, O., & Gordienko, Y. (2010). Enabling high-performance
distributed computing to e-science by integration of 4th generation language
environments with desktop grid architecture and convergence with global
computing grid. In Proc. of Cracow Grid Workshop (CGW’10) (pp. 234-243).

[4] Ogala, J. O., & Ojie, D. V. (2020). Comparative analysis of c, c++, c# and java
programming languages. GSJ, 8(5).

 [5] A. Dinh, S. Miertschin, A. Young, and S. D. Mohanty, “A data-driven approach
to predicting diabetes and cardiovascular disease with machine learning,” BMC
Medical Informatics and Decision Making, vol. 19, no. 1, Nov. 2019, doi: 10.1186/
s12911-019-0918-5.

[6] Takeuchi, H., & Nonaka, I. (1986). The new product development game.
Harvard business review, 64(1), 137-146.

[7] Sutherland, J. (1993). The Plan is the Problem!.

[8] Sutherland, J. V., & Schwaber, K. (1995). The SCRUM methodology. In
Business object design and implementation: OOPSLA workshop.

[9] S. Al-Saqqa, S. Sawalha i H. AbdelNabi, «Agile Software Development:
Methodologies and Trends,» International Journal of Interactive Mobile
Technologies, pp. vol. 14, no. 11, 2020.

[10] H. Wickham, Advanced R, 2nd ed. Chapman and Hall/CRC, 2019.

[11] K. Reitz, The Hitchhiker’s Guide to Python. O’Reilly Media, 2016. [Online].
Available: https://docs.python-guide.org/

[12] MISRA C, Guidelines for the use of the C language in critical systems.
HORIBA MIRA Limited, 2020.

[13] MISRA C++, Guidelines for the use of the C++ language in critical systems.
HORIBA MIRA Limited., 2020.

[14] “What is Quality Assurance (QA): Tutorial, Attributes, Components, Types.”
https://www.javatpoint.com/quality-assurance

[15] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, Dec. 1976, doi: 10.1109/
tse.1976.233837.

[16] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai, “Software
complexity analysis using Halstead metrics,” May 2017, doi: 10.1109/
icoei.2017.8300883.

40

Annexes
9.

41

ANNEX 1: Tidyverse Style Guide

1. Files
1.1 Names
File names should be meaningful and end in .R. Avoid using special characters in file names - stick
with numbers, letters and “_”.
1.2 Organisation
Giving a file a concise name helps with good organisation.
1.3 Internal structure
Use commented lines of “-” and “= ” to break up your file into easily readable chunks.

2. Syntax
2.1 Object names
Variable and function names should use only lowercase letters, numbers, and “_”. Use unders-
cores (_) to separate words within a name (e.g. “day_1” instead of “day1”).
2.2 Spacing
2.2.1 Commas
Always put a space after a comma, never before.
2.2.2 Parentheses
Do not put spaces inside or outside parentheses for regular function calls.
Place a space before and after () when used with if, for, or while.
Place a space after () used for function arguments.
2.2.3 Embracing
The embracing operator, {{ }}, should always have inner spaces to help emphasise its special be-
haviour.
2.2.4 Infix operators
The infix operators (== , + , - , <- , etc.) should always be surrounded by spaces.
2.2.5 Extra spaces
Adding extra spaces is ok if it improves alignment of = or <-.
2.3 Function calls
2.3.1 Named arguments
A function’s arguments typically fall into two broad categories: one supplies the data to compute
on; the other controls the details of computation. When you call a function, you typically omit the
names of data arguments, because they are used so commonly. If you override the default value
of an argument, use the full name.
2.3.2 Assignment
Avoid assignment in function calls.

42

2.4 Control flow
2.4.1 Code blocks
Curly braces, {}, define the most important hierarchy of R code. To make this hierarchy easy to see:
• { should be the last character on the line. The code must be on the same line as the opening

brace {.
• The contents should be indented by two spaces.
• } should be the first character on the line.
2.4.2 If statements
• If used, else should be on the same line as }.
• & and | should never be used inside of an if clause because they can return vectors. Always use

&& and || instead.
• ifelse(x, a, b) is not a drop-in replacement for if (x) a else b.
2.4.3 Inline statements
It is ok to drop the curly braces for very simple statements that fit on one line, as long as they don’t
have side-effects. The return(), stop() or continue function calls should always go in their own {} block:
2.4.4 Implicit type coercion
Avoid implicit type coercion (e.g. from numeric to logical) in if statements:
2.4.5 Switch statements()
• Avoid position-based switch() statements.
• Each element should go on its own line.
• Elements that go to the next element must have a space after =.
• Provide a fall-through error, unless you have previously validated the input.
2.5 Long lines
Limit code to 80 characters per line.
2.6 Semicolons
Don’t put ; at the end of a line, and don’t use ; to put multiple commands on one line.
2.7 Assignment
Use <- , and not =, for assignment.
2.8 Data
2.8.1 Character vectors
Use “ “ ” not “ ‘ ” for quoting text. The only exception is when the text already contains double quotes
and no single quotes.
2.8.2 Logical vectors
Prefer TRUE and FALSE over T and F.
2.9 Comments
Each line of a comment should begin with the comment symbol and a single space: #

43

3. Functions
3.1 Naming
Use verbs for function names following the instructions explained in point 2.1.
3.2 Long lines
There are two options if the function name and definition can’t fit on a single line.
• Place each argument on its own line, and indent to match the opening (of function.
• Place each argument on its own line. Place the first on the line after the opening of the function.
3.3 return()
Use return() for express returns only. Otherwise, rely on R to return the result of the last evaluated
expression.
3.4 Comments
In code, use comments to explain the “why” not the “what” or the “how”. Each line of a comment
must begin with the comment symbol and a single space: #.

4. Pipes
4.1 Introduction
Use %>% to emphasise a sequence of actions, rather than the object that the actions are being
performed on.
Avoid using the pipe when:
• You need to manipulate more than one object at a time. Reserve pipes for a sequence of steps

applied to one primary object.
• There are meaningful intermediate objects that could be given informative names.
4.2 Whitespace
%>% should always have a space before it, and should usually be followed by a new line. After the
first step, each line should be indented by two spaces. This structure makes it easier to add new
steps (or rearrange existing steps) and harder to overlook a step.
4.3 Long lines
If the arguments to a function do not all fit on one line, put each argument on its own line and in-
dent.
4.4 Short pipes
A one-step pipe can stay on one line. However, unless you plan to expand it later on, it is better to
rewrite it as a regular function call.
4.5 No arguments

44

magrittr allows you to omit () on functions that do not have arguments. Avoid this feature.
4.6 Assignment
There are three acceptable forms of assignment:
• Variable name and assignment on separate lines
• Variable name and assignment on the same line
• Assignment at the end of the pipe with ->

ANNEX 2: Google’s R Style Guide

1. Files
1.1 Names
File names should be meaningful and end in .R. Avoid using special characters in file names - stick
with numbers, letters and “_”.
Everything must be documented.
1.2 Organisation
Giving a file a concise name helps with good organisation.
1.3 Internal structure
Use commented lines of “-” and “= ” to break up your file into easily readable chunks.

2. Sintaxi
2.1 Object names
2.1.1 CamelCase
Function names have initial capital letters (CamelCase)
2.1.2 Dot at the beginning of a private function
The names of private functions should begin with a dot.
Spacing
2.3. Spacing
2.2.1 Commas
Always put a space after a comma, never before.
2.2.2 Parentheses
Do not put spaces inside or outside parentheses for regular function calls.
Place a space before and after () when used with if, for, or while.
Place a space after () used for function arguments.
2.2.3 Embracing
The embracing operator, {{ }}, should always have inner spaces to help emphasise its special be-
haviour.
2.2.4 Infix operators
Most infix operators (== , + , - , <-, etc.) should always be surrounded by spaces.

45

2.2.5 Extra spaces
Adding extra spaces is ok if it improves alignment of = or <-.
2.3 Function calls
2.3.1 Named arguments
A function’s arguments typically fall into two broad categories: one supplies the data to compute
on; the other controls the details of computation. When you call a function, you typically omit the
names of data arguments, because they are used so commonly. If you override the default value
of an argument, use the full name.
2.3.2 Assignment
Avoid assignment in function calls.
2.3.3 Do not use attach()
It is recommended not to use attach() as the possibility of creating errors is very high.
Control flow
2.4. Control flow
2.4.1 Code blocks
Curly braces, {}, define the most important hierarchy of R code. To make this hierarchy easy to see:
• { should be the last character on the line. The code must be on the same line as the opening

brace {.
• The contents should be indented by two spaces.
• } should be the first character on the line.
2.4.2 If statements
• If used, else should be on the same line as }.
• & and | should never be used inside of an if clause because they can return vectors. Always

use && and || instead.
• ifelse(x, a, b) it is not a drop-in replacement for if (x) a else b.
2.4.3 Inline statements
It is ok to drop the curly braces for very simple statements that fit on one line, as long as they don’t
have side-effects. The return(), stop() or continue function calls should always go in their own {}
block:
2.4.4 Implicit type coercion
Avoid implicit type coercion (e.g. from numeric to logical) in if statements:
2.4.5 Switch statements
• Avoid position-based switch() statements.
• Each element should go on its own line.
• Elements that fall through to the following element should have a space after =.
• Provide a fall-through error, unless you have previously validated the input.

46

2.5 Long lines
Limit code to 80 characters per line.
2.6 Semicolons
Don’t put ; at the end of a line, and don’t use ; to put multiple commands on one line.
2.7 Assignment
Use <- , not =, for assignment.
2.8 Data
2.8.1 Character vectors
Use “ “ ” not “ ‘ ” for quoting text. The only exception is when the text already contains double
quotes and no single quotes.
2.8.2 Logical vectors
Prefer TRUE and FALSE over T and F.
2.9 Comments
Each line of a comment should begin with the comment symbol and a single space: #

3. Funcions
3.1 Naming
Use verbs for function names following the directions given in point 2.
3.2 Long lines
There are two options if the function name and definition can’t fit on a single line.
• Place each argument on its own line, and indent to match the opening (of function.
• Place each argument on its own line. Place the first on the line after the opening of the function.
3.3 return()
Always use return().
3.4 Comments
In code, use comments to explain the “why” not the “what” or “how”. Each line of a comment
should begin with the comment symbol and a single space: #.

4. Pipes
4.1 Introduction
Use %>% to emphasise a sequence of actions, rather than the object that the actions are being
performed on.
Avoid using the pipe when:
• You need to manipulate more than one object at a time. Reserve pipes for a sequence of steps

applied to one primary object.
• There are meaningful intermediate objects that could be given informative names.
4.2 Whitespace
%>% should always have a space before it, and should usually be followed by a new line. After the

47

first step, each line should be indented by two spaces. This structure makes it easier to add new
steps (or rearrange existing steps) and harder to overlook a step.
4.3 Long lines
If the arguments to a function do not all fit on one line, put each argument on its own line and in-
dent.
4.4 Short pipes
A one-step pipe can stay on one line. However, unless you plan to expand it later on, it is better to
rewrite it as a regular function call.
4.5 No arguments
magrittr allows you to omit () on functions that do not have arguments. Avoid this feature.
4.6 Assignment
There are two acceptable forms of assignment:
• Variable name and assignment on separate lines
• Variable name and assignment on the same line
• Assignment at the end of the pipe with -> is not acceptable

ANNEX 3: Amazon AWS R Coding Style

1. Notation and naming
1.1 File names
File names should be meaningful and end in .R.
If files need to be run in sequence, prefix them with numbers.
1.2 Object names
Variable and function names should be in lowercase.
Use an underscore (_) to separate words within a name.
Variable names should be nouns and function names should be verbs.
Strive for names that are concise and meaningful.
Where possible, avoid using names of existing functions and variables. Doing so will cause confu-
sion for the readers of your code.

The Amazon R Coding Style is based on Google’s R Style Guide (see
Annex 2) and “Advanced R, by Hadley Wickham”, with a few tweaks as
explained below.

48

2. Syntax
2.1 Spacing
Place spaces around all infix operators (=, +, -, <-, etc.). The same rule applies when using = in
function calls. Always put a space after a comma, and never before.
Place a space before left parentheses, except in a function call.
Extra spacing (i.e. more than one space in a row) is ok if it improves alignment of equal signs or
assignments (<-).
Do not place spaces around code in parentheses or square brackets.
2.2 Curly braces {}
An opening curly brace should never go on its own line and should always be followed by a new
line. A closing curly brace should always go on its own line, unless it is followed by else.
2.3 Line length
Limit code to 80 characters per line. If you find yourself running out of room, this is a good indica-
tion that you should encapsulate some of the work in a separate function.
2.4 Indentation
When indenting your code, use two spaces. Never use tabs or mix tabs and spaces.
The only exception is if a function definition runs over multiple lines. In that case, indent the second
line to where the definition starts.
2.5 Assignment
Use <-, not =, for assignment.

3. Organisation
3.1 Commenting Guidelines
Comment your code. Each line of a comment should begin with the comment symbol and a single
space: #.
Comments should explain the “why”, not the “what” or the “how”.
Short comments can be placed after code preceded by two spaces, #, and then one space.
Use commented lines of - and = to break up your file into easily readable chunks.
3.2 Function definitions and calls
Function definitions should first list arguments without default values, followed by those with de-
fault values.
In both function definitions and function calls, multiple arguments per line are allowed. Line breaks
are only allowed between assignments.
3.3 Function documentation
Functions should contain a comments section immediately below the function definition line. The-
se comments should consist of:
• A one-sentence description of the function.
• A list of the function’s arguments, denoted by Args:, with a description of each (including the

data type).

49

• And a description of the return value, denoted by “Returns:”.
Comments should be descriptive enough that a caller can use the function without reading any of
the function’s code.

ANNEX 4: PEP 8 – Style Guide for Python Code

1. Code lay-out
1.1 Indentation
Use 4 spaces per indentation level.
1.2 Tabs and spaces
Spaces are the preferred indentation method. Tabs should be used solely to remain consistent with
code that is already indented with tabs. Python disallows mixing tabs and spaces for indentation.
1.3 Maximum line length
Limit all lines to a maximum of 79 characters.
1.4 Line break
A line break before the operator is recommended when writing formulas rather than a line break
after the operator, although both options are still accepted.
1.5 Blank lines
• Surround top-level function and class definitions with two blank lines.
• Method definitions inside a class are surrounded by a single blank line.
1.6 Source file encoding
Code should always use UTF-8, and should not have an encoding declaration. In the standard
library, non-UTF-8 encodings should be used only for test purposes.
1.7 Imports
• Imports should usually be on separate lines.
• Imports are always put at the top of the file, just after any module comments and docstrings,

and before module globals and constants.
• Absolute imports are recommended, as they are usually more readable and tend to be better

behaved (or at least give better error messages) if the import system is incorrectly configured.
1.8 Module level dunder names
Module level “dunders” (i.e. names with two leading and two trailing underscores) should be pla-
ced after the module docstring but before any import statements.

50

2. String quotes
Single-quoted strings and double-quoted strings are the same. However, if you start with one type,
you should continue with the chosen type.

3. Whitespace in expressions and statements
3.1 Pet Peeves
Avoid extraneous whitespace in the following situations:
• Immediately inside parentheses, brackets or braces.
• Between a trailing comma and a following close parenthesis.
• Immediately before a comma, semicolon, or colon.
• However, in a slice the colon acts like a binary operator, and should have equal amounts on

either side (treating it as the operator with the lowest priority). In an extended slice, both colons
must have the same amount of spacing applied.

• Immediately before the open parenthesis that starts the argument list of a function call.
• Immediately before the open parenthesis that starts an indexing.
• More than one space around an assignment operator to align it with another.
3.2 Other recommendations
• Avoid trailing whitespace anywhere. Because it is usually invisible, it can be confusing.
• Always surround these binary operators with a single space on either side: assignment (=),

augmented assignment (+=, -= etc.), comparisons (==, <, >, !=, <>, <=, >= , in, not in, is, is not),
Booleans (and, or, not).

• If operators with different priorities are used, consider adding whitespace around the opera-
tors with the lowest priority(ies). Never use more than one space, and always have the same
amount of whitespace on both sides of a binary operator.

• Function annotations should use the normal rules for colons and always have spaces around
the “->” arrow if present.

• Do not use spaces around the “=” sign when used to indicate a keyword argument, or when
used to indicate a default value for an unannotated function parameter.

• While sometimes it is okay to put an if/for/while with a small body on the same line, never do
this for multi-clause statements.

4. When to use trailing commas
Trailing commas are usually optional, except they are mandatory when making a tuple of one ele-
ment. For clarity, it is recommended to surround the latter in (technically redundant) parentheses.

5. Comentaris
Put understandable code explanations. Comments that contradict the code are worse than no
comments. Always make a priority of keeping the comments up-to-date when the code changes.

51

5.1 Block comments
• Block comments generally apply to some (or all) code that follows them, and are indented to

the same level as that code.
• Each line of a block comment starts with a # and a single space (unless it is indented text inside

the comment).
• Paragraphs inside a block comment are separated by a line containing a single #.
5.2 Inline comments
Utilitzar els comentaris en línia amb moderació.
5.3. Documentation strings
Conventions for writing good documentation strings (a.k.a. “docstrings”) are immortalised in PEP 25716.

6. Convencions de nomenclatura
6.1 Overriding principle
Names that are visible to the user as public parts of the API should follow conventions that reflect
usage rather than implementation.
6.2 Names to avoid
Never use the characters “l” (lowercase letter el), “O” (uppercase letter oh) or “I” (uppercase letter
eye) as single character variable names.
6.3 ASCII compatibility
Identifiers used in the standard library must be ASCII compatible as described in the policy section
of PEP 313117.
6.4 Package and module names
Modules should have short, all-lowercase names. Underscores can be used in the module name
if it improves readability. Python packages should also have short, all-lowercase names, although
the use of underscores is discouraged.
6.5 Class names
Class names should normally use the CamelCase convention.
6.6 Exception names
You should use the suffix “Error” on your exception names (if the exception actually is an error).
6.7 Noms de variables globals
The conventions are about the same as those for functions.
6.8 Function and variable names
• Function names should be lowercase, with words separated by underscores as necessary to

improve readability.
• Variable names follow the same convention as function names.

16 https://peps.python.org/pep-0257/
17 https://peps.python.org/pep-3131/

52

6.9 Function and method arguments
• Always use “self” for the first argument to instance methods.
• Always use “cls” for the first argument to class methods.
6.10 Method names and instance variables
• Use the function naming rules: lowercase with words separated by underscores as necessary

to improve readability.
• Use one leading underscore only for non-public methods and instance variables.
6.11 Constants
Constants are usually defined on a module level and written in all capital letters with underscores
separating words.
6.12 Design for inheritance
Always decide whether a class’s methods and instance variables (collectively: “attributes”) should
be public or non-public. If in doubt, choose non-public; it is easier to make it public later than to
make a public attribute non-public.

7. Programming recommendations
• Code should be written in a way that does not disadvantage other implementations of Python

(PyPy, Jython, IronPython, Cython, Psyco, and such).
• Comparisons to singletons like “None” should always be done with “is” or is “not”, never the

equality operators.
• Use “is not” operator rather than “not … is”.
• Always use a “def” statement instead of an assignment statement that binds a lambda expres-

sion directly to an identifier.
• Use exception chaining appropriately.
• When catching operating system errors, prefer the explicit exception hierarchy introduced in

Python 3.3 over introspection of “errno” values.
• For all try/except clauses, limit the try clause to the absolute minimum amount of code neces-

sary. This avoids masking bugs.
• When a resource is local to a particular section of code, use a “with” statement to ensure it is

cleaned up promptly and reliably after use.
• Context managers should be invoked through separate functions or methods whenever they

do something other than acquire and release resources.
• Be consistent in “return” statements. All return statements in a function should return an ex-

pression.
• Use ‘’.startswith() and ‘’.endswith() instead of string slicing to check for prefixes or suffixes.

startswith() and endswith() are cleaner and less error prone.
• Object type comparisons should always use isinstance() instead of comparing types directly.
• For sequences, (strings, lists, tuples), use the fact that empty sequences are false.

53

• Don’t write string literals that rely on significant trailing whitespace. Such trailing whitespace is
visually indistinguishable and some editors will trim them.

• Do not compare Boolean values to True or False using “==”.

ANNEX 5: Google Python Style Guide

This Python style guide written by Google is based on the official Pyt-
hon PEP8 guide. If a rule is not stated below, that does not mean that it
does not exist, but that the rule in PEP8 prevails (see Annex 4)

1. Python style rules
1.1 Semicolons
Do not terminate your lines with semicolons. Do not use semicolons to put two statements on the
same line.
1.2 Line length
The maximum line length is 80 characters.
1.3 Parentheses
Use parentheses sparingly.
It is fine, though not required, to use parentheses around tuples. Do not use them in return sta-
tements or conditional statements unless using parentheses for implied line continuation or to
indicate a tuple.
1.4 Indentation
Indent your code blocks with 4 spaces.
Never use tabs or a mix of tabs and spaces. Implied line continuation should align wrapped ele-
ments vertically or use a hanging 4-space indent. In this case there should be nothing after the
opening parenthesis or bracket on the first line.
1.5 Blank lines
• Two blank lines between top-level definitions, be they function or class definitions.
• One blank line between method definitions and between the docstring of a class and the first

method.
• No blank line following a “def” line.
• Use single blank lines as you judge appropriate within functions or methods.
• Blank lines need not be anchored to the definition.

54

1.6 Whitespace
• Follow standard typographic rules for the use of spaces around punctuation.
• No whitespace inside parentheses, brackets or braces.
• No whitespace before or after a comma, period or semicolon, except at the end of the line.
• No whitespace between :, #, =, etc to align code
• Surround binary operators with a single space on either side for assignment (=), augmented

assignment (+=, -= etc.), comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not), and Boo-
leans (and, or, not).

1.7 Shebang line
Most .py files do not need to start with a #! line. Start the main file of a program with #!/usr/bin/
env python3 (to support virtualenvs) or #!/usr/bin/python3 per PEP-39418. This line is used by the
kernel to find the Python interpreter, but is ignored by Python when importing modules. It is only
necessary on a file intended to be executed directly.
1.8 Comments and docstrings
Be sure to use the right style for module, function, method docstrings and inline comments.
1.9 Strings
Use an f-string, the % operator, or the “format” method for formatting strings, even when the pa-
rameters are all strings.
1.10 Files, sockets, and similar stateful resources
Explicitly close files and sockets when done with them. This rule naturally extends to closeable re-
sources that internally use sockets, such as database connections, and also other resources that
need to be closed down in a similar fashion.
1.11 TODO comments
• Use TODO comments for code that is temporary, a short-term solution, or good-enough but

not perfect.
• The purpose is to have a consistent TODO format that can be searched to find out how to get

more details.
• A TODO is not a commitment that the person referenced will fix the problem. Thus when you

create a TODO with a username, it is almost always your own username that is given.
• If the TODO describes future changes, make sure that you include either a specific date or a

specific event.
1.12 Imports formatting
Imports should be on separate lines; there are exceptions for “typing” and “collections.abc” im-
ports.
1.13 Statements
Generally only one statement per line.
1.14 Getters and setters
Getter and setter functions (also called accessors and mutators) should be used when they provi-
de a meaningful role or behaviour for getting or setting a variable’s value. In particular, they should

18 https://peps.python.org/pep-0394/

55

be used when getting or setting the variable is complex or the cost is significant, either currently
or in a reasonable future.
1.15 Naming
Function names, variable names, and filenames should be descriptive; avoid abbreviation. In par-
ticular, do not use abbreviations that are ambiguous or unfamiliar to readers outside your project,
and do not abbreviate by deleting letters within a word.
1.16 Main
In Python, pydoc, as well as unit tests, require modules to be importable. If a file is intended to be
used as an executable, its main functionality should be in a main function, and your code should
always check “if __name__ == ‘__main__’” before executing your main program, so that it is not
executed when the module is imported.
1.17 Function length
Prefer small and focused functions.
1.18 Type annotations
There are general rules such as: only annotate “self” or “cls” if it is necessary for proper type in-
formation. If any other variable or a returned type should not be expressed, use “Any”. You are not
required to annotate all the functions in a module.
Follow the rules set out above concerning spaces and indentation.

56

ANNEX 6: MISRA C:2012 Rules and Directives

Description of the columns from left to right: list of rules and directives,
category, and description. The rules and guidelines are categorised by
levels according to need: Required, advisory and mandatory.

Required

Required

Required

Required

Advisory

Required

Advisory

Advisory

Advisory

Required

Advisory

Advisory

Required

Required

Required

Advisory

Required

Required

Advisory

Required

Required

Required

Any implementation-defined behaviour on which the output of the program
depends shall be documented and understood

All source files shall compile without any compilation errors

All code shall be traceable to documented requirements

All usage of assembly language should be documented

Sections of code should not be “commented out”

Typedefs that indicate size and signedness should be used in place of the basic
numerical types

If a pointer to a structure or union is never dereferenced within a translation unit,
then the implementation of the object should be hidden

Precautions shall be taken in order to prevent the contents of a header file being
included more than once

Dynamic memory allocation shall not be used

The validity of values received from external sources shall be checked

Language extensions should not be used

Emergent language features shall not be used

Run-time failures shall be minimised

Assembly language shall be encapsulated and isolated

Identifiers in the same name space with overlapping visibility should be typogra-
phically unambiguous

If a function returns error information, then that error information shall be tested

A function should be used in preference to a function-like macro where they are
interchangeable

The validity of values passed to library functions shall be checked

Functions which are designed to provide operations on a resource should be
called in an appropriate sequence

The program shall contain no violations of the standard C syntax and constraints,
and shall not exceed the implementation’s translation limits

There shall be no occurrence of undefined or critical unspecified behaviour

A project shall not contain unreachable code

RULES AND DIRECTIVES CATEGORY DESCRIPTION

D.1.1

D.2.1

D.3.1

D.4.1

D.4.2

D.4.3

D.4.4

D.4.5

D.4.6

D.4.7

D.4.8

D.4.9

D.4.10

D.4.11

D.4.12

D.4.13

D.4.14

R.1.1

R.1.2

R.1.3

R.1.4

R.2.1

57

Required

Advisory

Advisory

Advisory

Advisory

Advisory

Required

Required

Required

Advisory

Required

Required

Required

Required

Required

Required

Required

Required

Advisory

Required

Required

Required

Required

Required

Required

Required

Required

Required

There shall be no dead code

A project should not contain unused type declarations

A project should not contain unused tag declarations

A function should not contain unused label declarations

The character sequences /* and // shall not be used within a comment

Octal and hexadecimal escape sequences shall be terminated

External identifiers shall be distinct

An identifier declared in an inner scope shall not hide an identifier declared in an
outer scope

Identifiers shall be distinct from macro names

A tag name shall be a unique identifier

Identifiers that define objects or functions with internal linkage should be unique

Single-bit named bit fields shall not be of a signed type

A project should not contain unused macro declarations

There should be no unused parameters in functions

Line-splicing shall not be used in // comments

Trigraphs should not be used

Identifiers declared in the same scope and name space shall be distinct

Macro identifiers shall be distinct

A typedef name shall be a unique identifier

Identifiers that define objects or functions with external linkage shall be unique

Bit-fields shall only be declared with an appropriate type

Octal constants shall not be used

A “u” or “U” suffix shall be applied to all integer constants that are represented in
an unsigned type

The lowercase character “l” shall not be used in a literal suffix

A string literal shall not be assigned to an object unless the object’s type is “poin-
ter to const-qualified char”

Types shall be explicitly specified

Function types shall be in prototype form with named parameters

All declarations of an object or function shall use the same names and type
qualifiers

R.2.2

R.2.3

R.2.4

R.2.5

R.2.6

R.2.7

R.3.1

R.3.2

R.4.1

R.4.2

R.5.1

R.5.2

R.5.3

R.5.4

R.5.5

R.5.6

R.5.7

R.5.8

R.5.9

R.6.1

R.6.2

R.7.1

R.7.2

R.7.3

R.7.4

R.8.1

R.8.2

R.8.3

RULES AND DIRECTIVES CATEGORY DESCRIPTION

58

Required

Required

Required

Advisory

Required

Advisory

Required

Advisory

Required

Advisory

Required

Mandatory

Required

Required

Required

Required

Required

Required

Required

Required

Advisory

Required

Required

Required

Required

Required

Required

Advisory

A compatible declaration shall be visible when an object or function with external
linkage is defined.

An external object or function shall be declared once in one and only one file

An identifier with external linkage shall have exactly one external definition

The static storage class specifier shall be used in all declarations of objects and
functions that have internal linkage

An inline function shall be declared with the static storage class

Within an enumerator list, the value of an implicitly-specified enumeration cons-
tant shall be unique

The restrict type qualifier shall not be used

The initialiser for an aggregate or union shall be enclosed in braces { }

An element of an object shall not be initialised more than once

Operands shall not be of an inappropriate essential type

The value of an expression shall not be assigned to an object with a narrower
essential type or of a different essential type category

The value of an expression should not be cast to an inappropriate essential type

Functions and objects should not be defined with external linkage if they are
referenced in only one translation unit

An object should be defined at block scope if its identifier only appears in a single
function

When an array with external linkage is declared, its size should be explicitly
specified

A pointer should point to a const-qualified type whenever possible

The value of an object with automatic storage duration shall not be read before it
has been set

Arrays shall not be partially initialised

Where designated initialisers are used to initialize an array object the size of the
array shall be specified explicitly

Expressions of essentially character type shall not be used inappropriately in
addition and subtraction operations

Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category

The value of a composite expression shall not be assigned to an object with
wider essential type
If a composite expression is used as one operand of an operator in which the
usual arithmetic conversions are performed then the other operand shall not have
wider essential type.
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Conversions shall not be performed between a pointer to a function and any
other type.

Conversions shall not be performed between a pointer to an incomplete type and
any other type.

A cast shall not be performed between a pointer to object type and a pointer to a
different object type

A conversion should not be performed between a pointer to object and an
integer type

R.8.4

R.8.5

R.8.6

R.8.7

R.8.8

R.8.9

R.8.10

R.8.11

R.8.12

R.8.13

R.8.14

R.9.1

R.9.2

R.9.3

R.9.4

R.9.5

R.10.1

R.10.2

R.10.3

R.10.4

R.10.5

R.10.6

R.10.7

R.10.8

R.11.1

R.11.2

R.11.3

R.11.4

RULES AND DIRECTIVES CATEGORY DESCRIPTION

59

Advisory

Required

Required

Required

Required

Advisory

Required

Advisory

Advisory

Mandatory

Required

Required

Advisory

Advisory

Required

Mandatory

Required

Required

Required

Required

Advisory

Required

Required

Advisory

Advisory

Required

Required

Required

A conversion should not be performed from pointer to void into pointer to object

A cast shall not be performed between pointer to void and an arithmetic type

A cast shall not be performed between pointer to object and a non-integer
arithmetic type

The macro NULL shall be the only permitted form of integer null pointer constant

The righthand operand of a shift operator shall lie in the range zero to one less
than the width in bits of the essential type of the left hand operand

Evaluation of constant expressions should not lead to unsigned integer wrap-
around

Initialiser lists shall not contain persistent side effects

A full expression containing an increment (++) or decrement (--) operator should
have no other potential side effects other than that caused by the increment or
decrement operator

The right hand operand of a logical && or || operator shall not contain persistent
side effects

A loop counter shall not have essentially floating type

Controlling expressions shall not be invariant

The goto statement should not be used

A cast shall not remove any const or volatile qualification from the type pointed to
by a pointer

The precedence of operators within expressions should be made explicit

The comma operator should not be used

The sizeof operator shall not have an operand which is a function parameter
declared as “array of type”

The value of an expression and its persistent side effects shall be the same under
all permitted evaluation orders

The result of an assignment operator should not be used

The operand of the sizeof operator shall not contain any expression which has
potential side effects

A for loop shall be well-formed

The controlling expression of an if statement and the controlling expression of an
iteration- statement shall have essentially Boolean type

The goto statement shall jump to a label declared later in the same function

Any label referenced by a goto statement shall be declared in the same block, or
in any block enclosing the goto statement

There should be no more than one break or goto statement used to terminate
any iteration statement

A function should have a single point of exit at the end

The body of an iteration-statement or a selection-statement shall be a com-
pound-statement

All if … else if constructs shall be terminated with an else statement

All switch statements shall be well-formed

R.11.5

R.11.6

R.11.7

R.11.8

R.11.9

R.12.1

R.12.2

R.12.3

R.12.4

R.12.5

R.13.1

R.13.2

R.13.3

R.13.4

R.13.5

R.13.6

R.14.1

R.14.2

R.14.3

R.14.4

R.15.1

R.15.2

R.15.3

R.15.4

R.15.5

R.15.6

R.15.7

R.16.1

RULES AND DIRECTIVES CATEGORY DESCRIPTION

60

Required

Required

Required

Required

Required

Required

Required

Required

Mandatory

Mandatory

Advisory

Mandatory

Required

Advisory

Required

Required

Required

Advisory

Advisory

Required

Required

Required

Mandatory

Advisory

Advisory

Required

Required

Required

A switch label shall only be used when the most closely-enclosing compound
statement is the body of a switch statement

An unconditional break statement shall terminate every switch-clause

Every switch statement shall have a default label

Every switch statement shall have at least two switch-clauses

The features of <stdarg.h> shall not be used

A function shall not be declared implicitly

The function argument corresponding to a parameter declared to have an array
type shall have an appropriate number of elements

The value returned by a function having non-void return type shall be used

A pointer resulting from arithmetic on a pointer operand shall address an element
of the same array as that pointer operand

The relational operators >, >=, < and <= shall not be applied to objects of pointer
type except where they point into the same object

Declarations should contain no more than two levels of pointer nesting

Flexible array members shall not be declared

A default label shall appear as either the first or the last switch label of a switch
statement

A switch-expression shall not have essentially Boolean type

Functions shall not call themselves, either directly or indirectly

All exit paths from a function with non-void return type shall have an explicit
return statement with an expression

The declaration of an array parameter shall not contain the static keyword betwe-
en the []

A function parameter should not be modified

Subtraction between pointers shall only be applied to pointers that address
elements of the same array

The +, -, += and -= operators should not be applied to an expression of pointer type

The address of an object with automatic storage shall not be copied to another
object that persists after the first object has ceased to exist

Variable-length array types shall not be used

An object shall not be assigned or copied to an overlapping object

The union keyword should not be used

#include directives should only be preceded by preprocessor directives or comments

The ‘ , ” or \ characters and the /* or // character sequences shall not occur in a
header file name

The #include directive shall be followed by either a <filename> or “filename” sequence

A macro shall not be defined with the same name as a keyword

R.16.2

R.16.3

R.16.4

R.16.5

R.16.6

R.16.7

R.17.1

R.17.2

R.17.3

R.17.4

R.17.5

R.17.6

R.17.7

R.17.8

R.18.1

R.18.2

R.18.3

R.18.4

R.18.5

R.18.6

R.18.7

R.18.8

R.19.1

R.19.2

R.20.1

R.20.2

R.20.3

R.20.4

RULES AND DIRECTIVES CATEGORY DESCRIPTION

61

Advisory

Required

Required

Required

Required

Advisory

Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Advisory

Mandatory

Required

Required

Required

Mandatory

Mandatory

#undef should not be used

Tokens that look like a preprocessing directive shall not occur within a
macro argument

Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses

The controlling expression of a #if or #elif preprocessing directive shall
evaluate to 0 or 1

A macro parameter immediately following a # operator shall not immediately
be followed by a ## operator

A line whose first token is # shall be a valid preprocessing directive

#define and #undef shall not be used on a reserved identifier or reserved
macro name

The memory allocation and deallocation functions of <stdlib.h> shall not be
used

The standard header file <signal.h> shall not be used

The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used

The library functions bsearch and qsort of <stdlib.h> shall not be used

The standard header file <tgmath.h> shall not be used

The controlling expression of a #if or #elif preprocessing directive shall
evaluate to 0 or 1

The # and ## preprocessor operators should not be used

A macro parameter used as an operand to the # or ## operators, which is
itself subject to further macro replacement, shall only be used as an ope-
rand to these operators

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if, #ifdef or #ifndef directive to which they are related

A reserved identifier or macro name shall not be declared

The standard header file <setjmp.h> shall not be used

The Standard Library input/output functions shall not be used

The library functions abort, exit, getenv and system of <stdlib.h> shall not be
used

The Standard Library time and date functions shall not be used

The exception handling features of <fenv.h> should not be used

Any value passed to a function in <ctype.h> shall be representable as an
unsigned char or be the value EOF

The Standard Library function memcmp shall not be used to compare null
terminated strings
The pointer arguments to the Standard Library functions memcpy, mem-
move and memcmp shall be pointers to qualified or unqualified versions of
compatible types
Arguments to the standard library memcmp function must point to a pointer,
assigned type, Boolean, or enum type.
Use of the string handling functions from <string.h> shall not result in
accesses beyond the bounds of the objects referenced by their pointer
parameters
The size_t argument passed to any function in <string.h> shall have an
appropriate value

R.20.5

R.20.6

R.20.7

R.20.8

R.20.9

R.20.10

R.20.11

R.20.12

R.20.13

R.20.14

R.21.1

R.21.2

R.21.3

R.21.4

R.21.5

R.21.6

R.21.7

R.21.8

R.21.9

R.21.10

R.21.11

R.21.12

R.21.13

R.21.14

R.21.15

R.21.16

R.21.17

R.21.18

RULES AND DIRECTIVES CATEGORY DESCRIPTION

62

Mandatory

Mandatory

Required

Required

Mandatory

Required

Mandatory

Mandatory

Mandatory

Required

Required

Required

Required

The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or, strerror shall only be used as if they have pointer to const-qua-
lified type

The pointer returned by the Standard Library functions asctime, ctime,
gmtime, localtime, localeconv, getenv, setlocale or strerror shall not be used
following a subsequent call to the same function

The Standard Library function system of <stdlib.h> shall not be used

A block of memory shall only be freed if it was allocated by means of a
Standard Library function

There shall be no attempt to write to a stream which has been opened as
read-only

The value of a pointer to a FILE shall not be used after the associated
stream has been closed

The value of errno shall be set to zero prior to a call to an errno-set-
ting-function

The value of errno shall only be tested when the last function to be called
was an errno-setting-function

All resources obtained dynamically by means of Standard Library functions
shall be explicitly released

The same file shall not be open for read and write access at the same time
on different streams

A pointer to a FILE object shall not be dereferenced

The macro EOF shall only be compared with the unmodified return value
from any Standard Library function capable of returning EOF

The value of errno shall be tested against zero after calling an errno-set-
ting-function

R.21.19

R.21.20

R.21.21

R.22.1

R.22.2

R.22.3

R.22.4

R.22.5

R.22.6

R.22.7

R.22.8

R.22.9

R.22.10

RULES AND DIRECTIVES CATEGORY DESCRIPTION

63

